简单的三角恒等变换公式的证明
1个回答
展开全部
三角函数恒等变形公式:
·两角和与差的三角函数:
cos(α
β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ
sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α
β)=(tanα
tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1
tanα·tanβ)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1
cosα)/2
tan^2(α/2)=(1-cosα)/(1
cosα)
tan(α/2)=sinα/(1
cosα)=(1-cosα)/sinα
·万能公式:
sinα=2tan(α/2)/[1
tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1
tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α
β)
sin(α-β)]
cosα·sinβ=(1/2)[sin(α
β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α
β)
cos(α-β)]
sinα·sinβ=-(1/2)[cos(α
β)-cos(α-β)]
·和差化积公式:
sinα
sinβ=2sin[(α
β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α
β)/2]sin[(α-β)/2]
cosα
cosβ=2cos[(α
β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α
β)/2]sin[(α-β)/2]
·两角和与差的三角函数:
cos(α
β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ
sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α
β)=(tanα
tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1
tanα·tanβ)
·倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1
cosα)/2
tan^2(α/2)=(1-cosα)/(1
cosα)
tan(α/2)=sinα/(1
cosα)=(1-cosα)/sinα
·万能公式:
sinα=2tan(α/2)/[1
tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1
tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α
β)
sin(α-β)]
cosα·sinβ=(1/2)[sin(α
β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α
β)
cos(α-β)]
sinα·sinβ=-(1/2)[cos(α
β)-cos(α-β)]
·和差化积公式:
sinα
sinβ=2sin[(α
β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α
β)/2]sin[(α-β)/2]
cosα
cosβ=2cos[(α
β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α
β)/2]sin[(α-β)/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |