
设A,B都是n阶矩阵,求证:若AB=A+B,则AB=BA
1个回答
展开全部
A+B=AB,即:
AB-A-B+E=E
(A-E)(B-E)=E
所以A-E可逆,它的逆就是B-E
既然这两个是互逆的,那么当然就可以交换位置,从而结论就的出来了.
由(A-E)(B-E)=E可得(B-E)(A-E)=E,拆开来就是BA-B-A+E=E,放回去就是BA=B+A=A+B=AB
证毕
AB-A-B+E=E
(A-E)(B-E)=E
所以A-E可逆,它的逆就是B-E
既然这两个是互逆的,那么当然就可以交换位置,从而结论就的出来了.
由(A-E)(B-E)=E可得(B-E)(A-E)=E,拆开来就是BA-B-A+E=E,放回去就是BA=B+A=A+B=AB
证毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询