lim(1/n²+1/(n+1)²+………1/(2n²))=0求解
1个回答
展开全部
n>1时,
1/n²+1/(n+1)²+………+1/(2n)²
<1/[(n-1)n]+1/[n(n+1)]+.....+1/[(2n-1)2n]
=1/(n-1)-1/n+1/n-1/(n+1)+....+1/(2n-1)-1/(2n)
=1/(n-1)-1/(2n)
=(n+1)/[2n(n-1)]
=(1+1/n)*1/(2n-2)
1/n²+1/(n+1)²+………+1/(2n)²
> 1/[n(n+1)]+1/[(n+1)(n+2)]+....+1/[2n(2n+1)]
=1/n-1/(n+1)+1/(n+1)-1/(n+2)+....+1/(2n)-1/(2n+1)
=1/n-1/(2n+1)
=(n+1)/[n(2n+1)]
=(1+1/n)*1/(2n+1)
∵(1+1/n)*1/(2n-2)与=(1+1/n)*1/(2n+1)的极限均为0
∴lim(1/n²+1/(n+1)²+………1/(2n)²)=0
1/n²+1/(n+1)²+………+1/(2n)²
<1/[(n-1)n]+1/[n(n+1)]+.....+1/[(2n-1)2n]
=1/(n-1)-1/n+1/n-1/(n+1)+....+1/(2n-1)-1/(2n)
=1/(n-1)-1/(2n)
=(n+1)/[2n(n-1)]
=(1+1/n)*1/(2n-2)
1/n²+1/(n+1)²+………+1/(2n)²
> 1/[n(n+1)]+1/[(n+1)(n+2)]+....+1/[2n(2n+1)]
=1/n-1/(n+1)+1/(n+1)-1/(n+2)+....+1/(2n)-1/(2n+1)
=1/n-1/(2n+1)
=(n+1)/[n(2n+1)]
=(1+1/n)*1/(2n+1)
∵(1+1/n)*1/(2n-2)与=(1+1/n)*1/(2n+1)的极限均为0
∴lim(1/n²+1/(n+1)²+………1/(2n)²)=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |