高一数学函数题 设函数f(x)=(ax^2+1)/(bx+c)是奇函数,a,b,c都是整数,且f(
高一数学函数题设函数f(x)=(ax^2+1)/(bx+c)是奇函数,a,b,c都是整数,且f(1)=2,f(2)<3(1)求a,b,c的值(2)当x<0,f(x)的单调...
高一数学函数题
设函数f(x)=(ax^2+1)/(bx+c)是奇函数,a,b,c都是整数,且f(1)=2,f(2)<3
(1)求a,b,c的值
(2)当x<0,f(x)的单调性如何,用单调性定义证明你的结论。 展开
设函数f(x)=(ax^2+1)/(bx+c)是奇函数,a,b,c都是整数,且f(1)=2,f(2)<3
(1)求a,b,c的值
(2)当x<0,f(x)的单调性如何,用单调性定义证明你的结论。 展开
5个回答
展开全部
f(-x)=(ax²+1)/(-bx+c)
∵f(x)是奇函数
∴f(x)=-f(x)
即:(ax²+1)/(bx+c)=(ax²+1)/(bx-c)
∴bx+c=bx-c
∴c=0
∵f(1)=2,即(a+1)/b=2
∴a+1=2b,即a=2b-1
f(2)=(4a+1)/2b<3
即4a+1<6b
将a=2b-1代入上式得
4(2b-1)+1<6b
∴b<3/2
∴b=1
∴a=2×b-1=1
综上,a=1,b=1,c=0
f(x)=(x^2+1)/x=x+1/x
x<0时,设x1<x2<0,则有
f(x1)-f(x2)=x1-x2+1/x1-1/x2=(x1-x2)+(x2-x1)/x1x2=(x1-x2)[1-1/x1x2]
(1)当x1<x2<-1时,x1x2>1,1-1/x2x1>0, f(x1)-f(x2)<0,函数是增函数
(2)当-1<x1<x2<0时,x1x2<1,1-1/x1x2<0,f(x1)-f(x2)>0,函数是减函数
∵f(x)是奇函数
∴f(x)=-f(x)
即:(ax²+1)/(bx+c)=(ax²+1)/(bx-c)
∴bx+c=bx-c
∴c=0
∵f(1)=2,即(a+1)/b=2
∴a+1=2b,即a=2b-1
f(2)=(4a+1)/2b<3
即4a+1<6b
将a=2b-1代入上式得
4(2b-1)+1<6b
∴b<3/2
∴b=1
∴a=2×b-1=1
综上,a=1,b=1,c=0
f(x)=(x^2+1)/x=x+1/x
x<0时,设x1<x2<0,则有
f(x1)-f(x2)=x1-x2+1/x1-1/x2=(x1-x2)+(x2-x1)/x1x2=(x1-x2)[1-1/x1x2]
(1)当x1<x2<-1时,x1x2>1,1-1/x2x1>0, f(x1)-f(x2)<0,函数是增函数
(2)当-1<x1<x2<0时,x1x2<1,1-1/x1x2<0,f(x1)-f(x2)>0,函数是减函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-01-11
展开全部
奇函数关于原点对称,f(-x)=-f(x)
f(-1)=-2
f(-1)=-2
追问
?然后呢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-01-11
展开全部
个身份的部分的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-01-11
展开全部
这个问题问得有点难哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询