如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意

如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少?... 如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为多少? 展开
 我来答
旋旋upHI50AX64
推荐于2017-09-25 · 超过64用户采纳过TA的回答
知道答主
回答量:115
采纳率:100%
帮助的人:110万
展开全部


试题分析:由于A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值.
试题解析:连接OA,OB,OC,作CH垂直于AB于H.

∵AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,
∴BE= AB=4,CF= CD=3,
∴OE= ,OF=
∴CH=OE+OF=3+4=7,
BH=BE+EH=BE+CF=4+3=7,
在Rt△BCH中根据勾股定理得到BC=
即PA+PC的最小值为 .
考点: 1.轴对称-最短路线问题;2.勾股定理;3.垂径定理
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式