如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.
2个回答
展开全部
分析:(1)由角平分线定义得出∠ABE=∠DBE,由SAS证明△ABE≌△DBE即可;
(2)由三角形内角和定理得出∠ABC=30°,由角平分线定义得出∠ABE=∠DBE=
1
/2
∠ABC=15°,在△ABE中,由三角形内角和定理即可得出答案.
解:(1)证明:∵BE平分∠ABC,
∴∠ABE=∠DBE,
在△ABE和△DBE中,
AB=DB
∠ABE=∠DBE
BE=BE,
∴△ABE≌△DBE(SAS);
(2)解:∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE=
1
/2
∠ABC=15°,
在△ABE中,
∠AEB=180°−∠A−∠ABE
=180°−100°−15°=65°.
(2)由三角形内角和定理得出∠ABC=30°,由角平分线定义得出∠ABE=∠DBE=
1
/2
∠ABC=15°,在△ABE中,由三角形内角和定理即可得出答案.
解:(1)证明:∵BE平分∠ABC,
∴∠ABE=∠DBE,
在△ABE和△DBE中,
AB=DB
∠ABE=∠DBE
BE=BE,
∴△ABE≌△DBE(SAS);
(2)解:∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE=
1
/2
∠ABC=15°,
在△ABE中,
∠AEB=180°−∠A−∠ABE
=180°−100°−15°=65°.
展开全部
(1)证明:∵BE平分∠ABC
∴∠ABE=∠DBE(角平分线的定义)
在△ABE和△DBE中,
AB=DB(已知)
∠ABE=∠DBE(已证)
BE=BE(公共边),
∴△ABE≌△DBE(SAS);
(2)解:∵∠A=100°,∠C=50°,
∴∠ABC=30°(三角形内角和为180°),
∵BE平分∠ABC,
∴∠ABE=∠DBE=1/2∠ABC
=1/2×30°
=15°(角平分线的定义)
在△ABE中,
∠AEB=180°−∠A−∠ABE
=180°−100°−15°=65°.(三角形内角和定理)
∴∠ABE=∠DBE(角平分线的定义)
在△ABE和△DBE中,
AB=DB(已知)
∠ABE=∠DBE(已证)
BE=BE(公共边),
∴△ABE≌△DBE(SAS);
(2)解:∵∠A=100°,∠C=50°,
∴∠ABC=30°(三角形内角和为180°),
∵BE平分∠ABC,
∴∠ABE=∠DBE=1/2∠ABC
=1/2×30°
=15°(角平分线的定义)
在△ABE中,
∠AEB=180°−∠A−∠ABE
=180°−100°−15°=65°.(三角形内角和定理)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询