(1-x)/(x^2+1)^2的不定积分如何求,用分式分解为部分分式做,

 我来答
羿妍练悦恺
2020-06-18 · TA获得超过1179个赞
知道小有建树答主
回答量:1700
采纳率:91%
帮助的人:7.5万
展开全部
没必要用部分分式,直接拆解可以了,前面用三角换元,后面用凑微分
∫ (1 - x)/(x² + 1)² dx
= ∫ dx/(x² + 1)² - ∫ x/(x² + 1)² dx
= ∫ d(tanz)/(tan²z + 1)² - ∫ 1/(x² + 1)² d(x²/2)
= ∫ sec²z/sec⁴z dz - (1/2)∫ 1/(x² + 1)² d(x² + 1)
= ∫ cos²z dz - 1/2 • - 1/(x² + 1)
= (1/2)∫ (1 + cos(2z)) dz + 1/[2(x² + 1)]
= z/2 + (1/4)sin(2z) + 1/[2(x² + 1)] + C
= z/2 + (1/2)sinzcosz + 1/[2(x² + 1)] + C
= (arctanx)/2 + x/[2(x² + 1)] + 1/[2(x² + 1)] + C
= (1/2)arctanx + (x + 1)/[2(x² + 1)] + C
其中tanz = x,dx = sec²z dz
sinz = x/√(x² + 1),cosz = 1/√(x² + 1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式