怎样学好初中数学函数?有没有好方法?

 我来答
纳燕冀喜儿
2019-03-28 · TA获得超过3742个赞
知道大有可为答主
回答量:3001
采纳率:30%
帮助的人:202万
展开全部
一、理解二次函数的内涵及本质.
二次函数y=ax2
+bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解;而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形.
二、熟悉几个特殊型二次函数的图象及性质.
1、通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式.
2、理解图象的平移口诀“加上减下,加左减右”.
y=ax2→y=a(x+h)2+k
“加上减下”是针对k而言的,“加左减右”是针对h而言的.
总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移.
3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;
4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质;利用图象来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等问题.
三、要充分利用抛物线“顶点”的作用.
1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点.
2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k;反之,若对称轴为x=m,y最值=n,则顶点为(m,n);理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果.
3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象.
四、理解掌握抛物线与坐标轴交点的求法.
一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点.
从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与x轴的交点个数.答案补充
学理科东西学会求本质
做类推
二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要)
因此
把握它的函数图像就能把握二次函数
在函数图像中
注意几点(标准式y=ax^2+bx+c,且a不等于0):
1、开口方向与二次项系数a有关

则开口向上
反之反是。
2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点
反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。
3、不一定和x轴有交点。当根的判定式Δ=b^2-4ac<0时,没有交点,也就是ax^2+bx+c=0这个方程式“没有实数解”(不能说没有解!具体你上高中就知道了)如果
Δ=0
那么正好有一个交点,也就是我们说的x轴与函数图像向切。对应的方程有唯一实数解。Δ>0时,有两个交点,对应方程有2个实数解。
4、不等式。如果你把上面3点搞清楚了
参考函数图像
不等式你就一定会解了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式