向量叉乘公式是什么?
叉乘,也叫向量的外积、向量积。顾名思义,求下来态扒的结果是一个向量,记这个向量为c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外积不遵守乘法交换率,因为向量a×向量b= -向量b×向量a
在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。
方向:
a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过正闭者180度的转角转向b时,竖起的大拇指指向是c的方向。)
也可举薯以这样定义(等效):
向量积|c|=|a×b|=|a||b|sin<a,b>
即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。
而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。
三维向量叉乘公式:y=kx+b
三维既是坐标轴的三个轴,即x轴、y轴、z轴,其中x表示左右空间,y表示前后空州轮间,z表示上下空间(不可用平面直角坐标系去理解空间方向)。
在罩困数学中,向量具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
代数规则
1、反交换律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。
4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积物迹念的R3构成了一个李代数。
6、两个非零向量a和b平行,当且仅当a×b=0。