虚数i的运算公式
虚数i的运算公式:(a+bi)±(c+di)=(a±c)+(b±d)i。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i=-1。
虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是含胡真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平咐陆面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a+bi的复数,其中实数a和b分别被称为复数的实部和虚部。
虚数i的三角函数公式
sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)
cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)
tan(a+bi)=sin(a+bi)/cos(a+bi)
cot(a+bi)=cos(a+bi)/sin(a+bi)
sec(a+bi)=1/cos(a+bi)
csc(a+bi)=1/sin(a+bi)
起源
要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。
有理数出现的非常早,它是伴随人们的生产实践而产生的。
无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的衡老顷比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。
广告 您可能关注的内容 |