怎么设微分方程的特解?
展开全部
微分方程的特解步骤如下:
一个二阶常系数非齐次线性微分方程,首先判断出是什么类型的。
然后写出与所给方程对应的齐次方程。
接着写出它的特征方程。由于这里λ=0不是特征方程的根,所以可以设出特解。
把特解代入所给方程,比较两端x同次幂的系数。
举例如下:
扩展资料:
微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:只能是具体情况具体分析,得看微分方程的具体形式
解微分方程为xy"+(x+4)y'+3y=4x+4,假设微分方程xy"+(x+4)y'+3y=0的特解为y=xʳ,将特解带入方程,有x(xʳ)"+(x+4)(xʳ)'+3xʳ=0,r(r-1)xʳ⁻¹+r(x+4)xʳ⁻¹+3xʳ=0,r(r-1)xʳ⁻¹+4rxʳ⁻¹+rxʳ+3xʳ=0,(r²+3r)+(r+3)x=0,(r+3)(r+x)=0,得:r=-3,则微分方程xy"+(x+4)y'+3y=0的特解为y=x⁻³,再设微分方程的通解为y=x⁻³u,有x(x⁻³u)"+(x+4)(x⁻³u)'+3x⁻³u=0,x(x⁻³u"-3x⁻⁴u'-3x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x(x⁻³u"-6x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x²u"-6xu'+12u+(x+4)(xu'-3u)+3xu=0,x²u"+(x²-2x)u'=0,u"×eˣ/x²+eˣ(1/x²-2/x³)u'=0,(u'eˣ/x²)'=0,u'eˣ/x²=a(a为任意常数),u'=ax²e⁻ˣ,u=-ax²e⁻ˣ-2axe⁻ˣ-2ae⁻ˣ+c(为任意常数),微分方程xy"+(x+4)y'+3y=0的通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³(c为任意常数);设原微分方程的特解为y=px+q,有p(x+4)+3(px+q)=4x+4,4px+4p+3q=4x+4,有4p=4,4p+3q=4,得:p=1,q=0,微分方程的特解为y=x,通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³+x
解微分方程为xy"+(x+4)y'+3y=4x+4,假设微分方程xy"+(x+4)y'+3y=0的特解为y=xʳ,将特解带入方程,有x(xʳ)"+(x+4)(xʳ)'+3xʳ=0,r(r-1)xʳ⁻¹+r(x+4)xʳ⁻¹+3xʳ=0,r(r-1)xʳ⁻¹+4rxʳ⁻¹+rxʳ+3xʳ=0,(r²+3r)+(r+3)x=0,(r+3)(r+x)=0,得:r=-3,则微分方程xy"+(x+4)y'+3y=0的特解为y=x⁻³,再设微分方程的通解为y=x⁻³u,有x(x⁻³u)"+(x+4)(x⁻³u)'+3x⁻³u=0,x(x⁻³u"-3x⁻⁴u'-3x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x(x⁻³u"-6x⁻⁴u'+12x⁻⁵u)+(x+4)(x⁻³u'-3x⁻⁴u)+3x⁻³u=0,x²u"-6xu'+12u+(x+4)(xu'-3u)+3xu=0,x²u"+(x²-2x)u'=0,u"×eˣ/x²+eˣ(1/x²-2/x³)u'=0,(u'eˣ/x²)'=0,u'eˣ/x²=a(a为任意常数),u'=ax²e⁻ˣ,u=-ax²e⁻ˣ-2axe⁻ˣ-2ae⁻ˣ+c(为任意常数),微分方程xy"+(x+4)y'+3y=0的通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³(c为任意常数);设原微分方程的特解为y=px+q,有p(x+4)+3(px+q)=4x+4,4px+4p+3q=4x+4,有4p=4,4p+3q=4,得:p=1,q=0,微分方程的特解为y=x,通解为y=(-ax⁻¹-2ax⁻²-2ax⁻³)e⁻ˣ+cx⁻³+x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询