e的1/ x次方的函数图形如下所示,则
1个回答
展开全部
y=e的1/x次方的函数图形如下所示:
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔 (John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
扩展资料:
指数函数的性质:
(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为(0, +∞)。
(3) 函数图形都是上凹的。
(4) a>1时,则指数函数单调递增;若0<a<1,则为单调递减的(图2)。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询