已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1),(1)求{an}的通项公式;(2)令Tn=(45)

已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1),(1)求{an}的通项公式;(2)令Tn=(45)nSn,问是否存在正整数m,对一切正... 已知数列{an}的前n项和为Sn,并且满足a1=2,nan+1=Sn+n(n+1),(1)求{an}的通项公式;(2)令Tn=(45)nSn,问是否存在正整数m,对一切正整数n,总有Tn≤Tm,若存在,求m的值;若不存在,说明理由. 展开
 我来答
手机用户02643
推荐于2016-08-21 · TA获得超过163个赞
知道答主
回答量:110
采纳率:0%
帮助的人:133万
展开全部
(1)令n=1,由a1=2及nan+1=Sn+n(n+1)①
得a2=4,故a2-a1=2,当n≥2时,有(n-1)an=Sn-1+n(n-1)②
①-②得:nan+1-(n-1)an=an+2n
整理得,an+1-an=2(n≥2)
当n=1时,a2-a1=2,
所以数列{an}是以2为首项,以2为公差的等差数列,
故an=2n…(6分)
(2)由(1)得Sn=n(n+1),
所以Tn=(
4
5
)nSn=(
4
5
)n(n2+n)

Tn?1=(
4
5
)n?1[(n?1)2+(n?1)],Tn+1=(
4
5
)n+1[(n+1)2+(n+1)]

TnTn?1
TnTn+1
,即
(
4
5
)n(n2+n)≥(
4
5
)n?1[(n?1)2+(n?1)]
(
4
5
)n(n2+n)≥(
4
5
)n+1[(n+1)2+(n+1)]

解得8≤n≤9.
故T1<T2<…<T8=T9>T10>T11>…
故存在正整数m对一切正整数n,
总有Tn≤Tm,此时m=8或m=9…..(13分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式