一平面经过两平面x+5y+z=0和x-z+4=0的交线且和平面x-4y-8z+12=0相交成45度 10
该平面的方程:4x+5y-2z+12=0
设平方方程为
x+5y+z+a(x-z+4)=0
(1+a)x+5y+(1-a)z+4a=0
因为该平面和已知平面x-4y-8z+12=0垂直
所以
它们的法向量垂直,即
1×(1+a)-4×5-8×(1-a)=0
1+a-20-8+8a=0
9a=27
a=3
所以
方程为:(1+3)x+5y+(1-3)z+4×3=0
即4x+5y-2z+12=0
扩展资料:
“平面方程”是指空间中所有处于同一平面的点所对应的方程,其一般式形如Ax+By+Cz+D=0。
在空间中,到两点距离相同的点的轨迹。在 [1] 中,平面公式为A*(x-x0)+B*(y-y0)+C*(z-z0)=0,其定义为与固定点(x0,y0,z0)的连线垂直于固定方向(A,B,C)的所有的点的集合。这两种定义在数学上是一致的。
平面方程
根据定义,设动点为M(x,y,z),两点分别为(a,b,c)和(d,e,f)
则[(x-a)^2+(y-b)^2+(z-c)^2]^1/2=[(x-d)^2+(y-e)^2+(z-f)^2]^1/2
x^2-2ax+y^2-2by+z^2-2cz+(a^2+b^2+c^2)=x^2-2dx+y^2-2ey+z^2-2fz+(d^2+e^2+f^2)
(2d-2a)x+(2e-2b)y+(2f-2c)z+(a^2-d^2+b^2-e^2+c^2-f^2)=0
形式为ax+by+cz+d=0
平面的法向量
取平面内三点:A(0,0,-d/c)B(1,1,-(d+b+a)/c)C(0,2,-(d+2b)/c) AC=(0,2,-2b/c)AB=(1,1,-(a+b)/c) 设向量n:(x,y,c)为平面的法向量,则 2y-2b=0 x+y-(a+b)=0 ->y=b x=a 则n=(a,b,c)为平面的一个法向量。
截距式:设平面方程为Ax+By+Cz+D=0,若D不等于0,取a=-D/A,b=-D/B,c=-D/C,则得平面的截距式方程:x/a+y/b+z/c=1。
它与三坐标轴的交点分别为P(a,0,0),Q(0,b,0),R(0,0,c),其中,a,b,c依次称为该平面在x,y,z轴上的截距。
点法式:n为平面的法向量,n=(A,B,C),M,M'为平面上任意两点,则有n·MM'=0, MM'=(x-x0,y-y0,z-z0),从而得平面的点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0
三点求平面可以取向量积为法线
任一三元一次方程的图形总是一个平面,其中x,y,z的系数就是该平面的一个法向量的坐标。
两平面互相垂直相当于A1A2+B1B2+C1C2=0
两平面平行或重合相当于A1/A2=B1/B2=C1/C2
点到平面的距离=abs(Ax0+By0+Cz0+D)/sqrt(A^2+B^2+C^2) 求解过程:面内外两点连线在法向量上的映射Prj(小n)(带箭头P1P0)=数量积
参考资料:百度百科-平面方程