25×(75÷5+45÷5+17)=1025。
自然数或正整数的数学理论就是众所周知的算术。至于几何、 代数等许多数学分支学科的名称,都是后来很晚的时候才有的。
国外系统地整理前人数学知识的书,要算是希腊的欧几里得的《几何原本》最早。《几何原本》全书共十五卷,后两卷是后人增补的。全书大部分是属于几何知识,在第七、八、九卷中专门讨论了数的性质和运算,属于算术的内容。
算术(arithmetic)是数学的一个基础分支。它以自然数和非负分数为主要对象。算术的内容包括两部分,一部分讨论自然数的读法、写法和它的基本运算,这一部分包括进位制和记数法。
主要是十进位制,其他的进位制与十进位制仅是采用的基数不同,都可以仿照十进位数的原理和原则进行计算,算术的另一部分包括算术运算的方法与原理的应用。如分数与百分数计算,各种量及其计算,比和比例,以及算术应用题。
75x45+17×25
=3×25×45+17×25
=25×(135+17)
=25×152
=25×(100+50+2)
=2500+1250+50
=3800
简便计算定律:
1、乘法分配律
简便计算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意实数。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。如将上式中的+变为x,运用乘法结合律也可简便计算。
2、乘法结合律
乘法结合律也是做简便运算的一种方法,用字母表示为(a×b)×c=a×(b×c),它的定义(方法)是:三个数相乘,先把前两个数相乘,再和第三个数相乘;或先把后两个数相乘,再和第一个数相乘,积不变。
它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。
3、乘法交换律
乘法交换律用于调换各个数的位置:a×b=b×a
4、加法交换律
加法交换律用于调换各个数的位置:a+b=b+a
5、加法结合律
(a+b)+c=a+(b+c)
=100×62
=6200
广告 您可能关注的内容 |