已知函数f(x)=x²+|x-a|-1 x属于R 1.判断函数f(x)的奇偶性 2.当a=2时,求函数f(x)的最小值

 我来答
xuzhouliuying
高粉答主

2016-08-11 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
解:
(1)
x取任意实数,函数表达式恒有意义,函数定义域为R,关于原点对称。
f(-x)=(-x)²+|(-x)-a|-1
=x²+|x+a|-1
分类讨论:
a=0时,f(x)=x²+|x|-1,f(-x)=x²+|x|-1=f(x)
函数是偶函数
a≠0时,f(x)=x²+|x+a|-1,f(-x)=x²+|x-a|-1
函数是非奇非偶函数。
(2)
a=2时,f(x)=x²+|x-2|-1
x≥2时,
f(x)=x²+x-2-1=x²+x-3=(x+½)²-13/4
对称轴x=-½,区间[2,+∞)在对称轴右侧,函数单调递增
f(x)≥f(2)=2²+2-3=3
x<2时,
f(x)=x²+2-x-1=x²-x+1=(x-½)²+¾
对称轴x=½
x=½时,函数有最小值f(x)min=f(½)=¾<3
综上,得:函数f(x)的最小值为¾
BlueSky黑影
2016-08-11 · TA获得超过6816个赞
知道大有可为答主
回答量:3379
采纳率:84%
帮助的人:1507万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式