隐函数的求导方法
3个回答
展开全部
e^y +xy =e
x=0
e^(y(0)) + 0 =e
y(0) =1
e^y +xy =e
两边求导
y'.e^y +( y + xy') =0
x=0
y'(0).e^[y(0)] +[ y(0) +0 ] = 0
y'(0).e + 1 =0
y'(0) = -1/e
y'.e^y +( y + xy') =0
两边求导
[y''+(y')^2 ].e^y + ( y' + xy''+ y' )= 0
x=0
[y''(0)+(y'(0))^2 ].e^[y(0)] + [ 2y'(0) +0 ]= 0
[ y''(0) + 1/e^2] . e - 2/e = 0
y''(0) = 1/e^2
x=0
e^(y(0)) + 0 =e
y(0) =1
e^y +xy =e
两边求导
y'.e^y +( y + xy') =0
x=0
y'(0).e^[y(0)] +[ y(0) +0 ] = 0
y'(0).e + 1 =0
y'(0) = -1/e
y'.e^y +( y + xy') =0
两边求导
[y''+(y')^2 ].e^y + ( y' + xy''+ y' )= 0
x=0
[y''(0)+(y'(0))^2 ].e^[y(0)] + [ 2y'(0) +0 ]= 0
[ y''(0) + 1/e^2] . e - 2/e = 0
y''(0) = 1/e^2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询