数学归纳法是怎样用的?数学归纳法什么时候不能用 什么时候不能用
1个回答
展开全部
我们都学过数学归纳法,非常精妙的一种数学方法,其主要用于证明某个命题在自然数范围内成立.大概步骤如下:
1:假设当n=1时命题成立;
2:证明如果在n=m时成立,那么可以推导n=m+1时命题也成立.
3:乱前从而备核可以证明此命题成立.
这就是我们常见的数学归纳法.名叫第一归纳法.事实上,数学归纳法可不止这一种形式,他有多种变体,除了我们可以从n=3等开始,或者是只考虑n为奇数偶数等,还有下面的完整归纳法:
1:证明当n=1,2,……,k时命题p(n)成立
2:证明p(m),p(m+1),p(m+2)……,p(m+k-1)成立,能推导出p(m+k)成立.从而证明此命题成立.也就是将第一归纳法里的一个推一个换成多个推一个.我们以一个例子,那就是证明菲波拉契数列的通项公式:
证明:当n=1,2时,可以检验其成立.
假设当n=k和n=k+1时命题皆成立,即:
从而证明了这个通项公式的正确.关于数学归纳法的内容,远不止我们中学所学的那么点.就此一例,希望能让各位同学打开自己的眼界,去探寻真正的数学哗滚清王国.
1:假设当n=1时命题成立;
2:证明如果在n=m时成立,那么可以推导n=m+1时命题也成立.
3:乱前从而备核可以证明此命题成立.
这就是我们常见的数学归纳法.名叫第一归纳法.事实上,数学归纳法可不止这一种形式,他有多种变体,除了我们可以从n=3等开始,或者是只考虑n为奇数偶数等,还有下面的完整归纳法:
1:证明当n=1,2,……,k时命题p(n)成立
2:证明p(m),p(m+1),p(m+2)……,p(m+k-1)成立,能推导出p(m+k)成立.从而证明此命题成立.也就是将第一归纳法里的一个推一个换成多个推一个.我们以一个例子,那就是证明菲波拉契数列的通项公式:
证明:当n=1,2时,可以检验其成立.
假设当n=k和n=k+1时命题皆成立,即:
从而证明了这个通项公式的正确.关于数学归纳法的内容,远不止我们中学所学的那么点.就此一例,希望能让各位同学打开自己的眼界,去探寻真正的数学哗滚清王国.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |