最小二乘法拟合圆原理

 我来答
张石头111
2022-11-11 · 超过38用户采纳过TA的回答
知道小有建树答主
回答量:96
采纳率:0%
帮助的人:1.7万
展开全部

最小二乘法拟合圆原理

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y的误差

最小二乘法,是一种数学优化技术。它通过最小化误差的平方和找到一组数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据、并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法拟合圆的方法;

第一步,根据已知点,描图X=[。。。],Y=[。。。],plot(X,Y,'p')

第二步,根据已知点拟合圆的一般式方程,利用公式求出圆心和半径

首先,用方程x^2+y^2+Dx+Ey+F=0,拟合出其系数D、E、F,求出圆心(-D/2,-E/2),半径0.5√(D^2+-E^2-4F)

第三步,根据圆的参数方程,求出x,y的点,描点plot(x,y,'r-'),得到拟合圆的图形

利用仿真的得来的数据、选取某一截面,用最小二乘法进行拟合,得到其拟合效果图,如上图所示

在1809年高斯对最小二乘估计进行的误差分析中发现。在线性模型的所有无偏估计类中,最小二乘估计是唯一的方差最小的无偏估计。

进入20世纪后,哥色特、费歇尔等人还发现。在正态误差的假定下、最小二乘估计有较完善的小样本理论、使基于它的统计推断易于操作且有关的概率计算不难进行

与此同时。对最小二乘法误差分析的研究也促进了线性模型理论的发展.如今。线性模型已经成为理论结果最丰富、应用最广泛的一类回归模型.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式