总结偏微分方程的解法

 我来答
惠企百科
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

可分为两大分支:解析解法和数值解法。

只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。

数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法,其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等。

扩展资料:

导数(Derivative)是微积分学中重要的基础概念。

对于定义域和值域都是实数域的函数f:R→R,若f(x)在点x0的某个邻域△x内,极限定义如下

f′(x0)=△x→0lim△xf(x0+△x)−f(x0)(1.1)若极限存在,则称函数f(x)在点x0处可导,f′(x0)称为其导数,或导函数,也可以记为dxdf(x0)。在几何上,导数可以看做函数曲线上的切线斜率。

给定一个连续函数,计算其导数的过程称为微分(Differentiation)。微分的逆过程为积分(Integration)。函数f(x)的积分可以写为

F(x)=∫f(x)dx(1.2)

其中F(x)称为f(x)的原函数。

若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。如果一个函数f(x)在定义域中的所有点都存在导数,则f(x)为可微函数(DifferentiableFunction)。可微函数一定连续,但连续函数不一定可微。例如函数_x_为连续函数,但在点x=0处不可导。下表是几个常见函数的导数:

参考资料来源:百度百科_微积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式