3个回答
展开全部
E,F为三角形ABC边AB,BC上的中点,则EF‖AC,GH‖AC
BM/MN=BE/AE=1,所以BN=MN
GH=(1/3)AC,EF=(1/2)AC
所以DM/(DM+MN)=GH/EF =2/3,所以DM=2MN=MN+BN=BM,所以M是BD中点
GM/EN=DM/(DM+MN)=2/3 , EN/AM=BE/AB=1/2,所以GM/AM=1/3
GM/(AG+GM)=1/3,GM=(1/2)AM=(1/2)GH,所以 GM=MH,GM+AG=MH+HC,所以AM=MC
所以M是AC中点 又因为M是BD中点 ,所以四边形ABCD为平行四边形
BM/MN=BE/AE=1,所以BN=MN
GH=(1/3)AC,EF=(1/2)AC
所以DM/(DM+MN)=GH/EF =2/3,所以DM=2MN=MN+BN=BM,所以M是BD中点
GM/EN=DM/(DM+MN)=2/3 , EN/AM=BE/AB=1/2,所以GM/AM=1/3
GM/(AG+GM)=1/3,GM=(1/2)AM=(1/2)GH,所以 GM=MH,GM+AG=MH+HC,所以AM=MC
所以M是AC中点 又因为M是BD中点 ,所以四边形ABCD为平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接BD脚AC于M,交EF于N
E,F为三角形ABC边AB,BC上的中点,则EF‖AC,GH‖AC
BM/MN=BE/AE=1,所以BN=MN
GH=(1/3)AC,EF=(1/2)AC
所以DM/(DM+MN)=GH/EF =2/3,所以DM=2MN=MN+BN=BM,所以M是BD中点
GM/EN=DM/(DM+MN)=2/3 , EN/AM=BE/AB=1/2,所以GM/AM=1/3
GM/(AG+GM)=1/3,GM=(1/2)AM=(1/2)GH,所以 GM=MH,GM+AG=MH+HC,所以AM=MC
所以M是AC中点 又因为M是BD中点 ,所以四边形ABCD为平行四边形
E,F为三角形ABC边AB,BC上的中点,则EF‖AC,GH‖AC
BM/MN=BE/AE=1,所以BN=MN
GH=(1/3)AC,EF=(1/2)AC
所以DM/(DM+MN)=GH/EF =2/3,所以DM=2MN=MN+BN=BM,所以M是BD中点
GM/EN=DM/(DM+MN)=2/3 , EN/AM=BE/AB=1/2,所以GM/AM=1/3
GM/(AG+GM)=1/3,GM=(1/2)AM=(1/2)GH,所以 GM=MH,GM+AG=MH+HC,所以AM=MC
所以M是AC中点 又因为M是BD中点 ,所以四边形ABCD为平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询