1个回答
展开全部
答:
x=5±√(16-y^2)
且关于x轴对称,所以V
=2π∫0到4 [(5+√(16-y^2))^2-(5-√(16-y^2))^2] dy
=2π∫0到4 20√(16-y^2) dy
=40π∫0到4 √(16-y^2) dy
令y=4sint,则t积分区域为0到π/2
则40π∫√(16-y^2) dy
=40π*16∫(cost)^2 dt
=40π*16(t/2+sin2t/4)|0到π/2
=160π^2
x=5±√(16-y^2)
且关于x轴对称,所以V
=2π∫0到4 [(5+√(16-y^2))^2-(5-√(16-y^2))^2] dy
=2π∫0到4 20√(16-y^2) dy
=40π∫0到4 √(16-y^2) dy
令y=4sint,则t积分区域为0到π/2
则40π∫√(16-y^2) dy
=40π*16∫(cost)^2 dt
=40π*16(t/2+sin2t/4)|0到π/2
=160π^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询