已知数列an中,an大于0且Sn=1/2(an+n/an)求数列an的通项公式,急求!
3个回答
2015-05-27
展开全部
您好,首先把n=1带入原式,
得a1=1,.Sn=1/2+n/2an,S(n+1)=1/2+(n+1)/2a(n+1).
S(n+1)-Sn=(n+1)/2a(n+1)-n/2an.
2a(n+1)=a(n+1)-na(n+1).
(n+2)a(n+1)=(n+1)an
[a(n+1)]/an=(n+1)/(n+2)
[a(n+1)]/an*an/[a(n-1)]*...*a2/a1=[a(n+1)]/a1=(n+1)/(n+2)*n/(n+1)*...*2/3
a(n+1)=(n+1)/3
所以an=n/3
得a1=1,.Sn=1/2+n/2an,S(n+1)=1/2+(n+1)/2a(n+1).
S(n+1)-Sn=(n+1)/2a(n+1)-n/2an.
2a(n+1)=a(n+1)-na(n+1).
(n+2)a(n+1)=(n+1)an
[a(n+1)]/an=(n+1)/(n+2)
[a(n+1)]/an*an/[a(n-1)]*...*a2/a1=[a(n+1)]/a1=(n+1)/(n+2)*n/(n+1)*...*2/3
a(n+1)=(n+1)/3
所以an=n/3
展开全部
∵Sn=1/2(Sn-S(n-1)+n/(Sn-S(n-1))
∴Sn^2-S(n-1)^2=n
数列{Sn^2-S(n-1)^2}是自然数数列
其前n项和=(S2^2-S1^2)+(S3^2-S2^2)+...+(Sn^2-S(n-1))=Sn^2-S1^2=2+3+...+n=n(n+1)/2-1
∴Sn^2=n(n+1)/2
Sn=√(n(n+1)/2) (an>0=>Sn>0)
an=Sn-S(n-1)=√(n(n+1)/2)-√(n(n-1)/2)
∴Sn^2-S(n-1)^2=n
数列{Sn^2-S(n-1)^2}是自然数数列
其前n项和=(S2^2-S1^2)+(S3^2-S2^2)+...+(Sn^2-S(n-1))=Sn^2-S1^2=2+3+...+n=n(n+1)/2-1
∴Sn^2=n(n+1)/2
Sn=√(n(n+1)/2) (an>0=>Sn>0)
an=Sn-S(n-1)=√(n(n+1)/2)-√(n(n-1)/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询