证明线性无关的方法 如图,为什么一个线性无关组乘以一个可逆矩阵,得到的矩阵里的向量组也线性无关? 20
右乘可逆矩阵等同于对原矩阵进行初等列变换,初等变换不改变线性无关性。
在一组数据中有一个或者多个量可以被其余量表示。线性无关,就是在一组数据中没有一个量可以被其余量表示。从维数空间上讲,例如,一个三维空间,那么必须用三个线性无关的向量来表示,如果在加上另外一个向量,那么这个向量必然可以由上述三个向量唯一的线性表出。
在三维空间里,互相垂直的三个坐标轴就是一组最简单的现行无关的向量。并且是三维空间上的极大无关组。其实,只要是不在同一平面的三个互不平行的向量都可以组成三维空间上的极大无关组。那也就是线性无关的。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
理解这句话的关键,在于把“线性变换”与“线性变换的一个描述”区别开。一个是那个对象,一个是对那个对象的表述。就好像我们熟悉的面向对象编程中,一个对象可以有多个引用,每个引用可以叫不同的名字,但都是指的同一个对象。如果还不形象,那就干脆来个很俗的类比。
扩展资料
线性相关增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。
常数对是否构成直线关系没影响(假定常数不为0)如:x=k*y+l*z+a(k,l是常数,y,z是变量,a是常数)那么x与y,z还是线性的,因为项:k*y是一次的,l*z这项也是一次的,常数项a没影响。
如:x=7*y+8*z是线性的,x=-y-2*z是线性的。x=2*y*z是非线性的(因为2yz这一项不是一次的)。
从二维图像来讲(假定只有y跟x这两个变量),线性的方程一定是直线的,曲的不行,有转折的也不行。
参考资料来源:百度百科-线性相关