排列组合中A和C怎么算啊
排列:
A(n,m)=n×(n-1)...(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合:
C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
扩展资料:
排列组合的基本计数原理:
1、加法原理和分类计数法
加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法。
那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
2、乘法原理和分步计数法
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。
合理分步的要求:
任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
与后来的离散型随机变量也有密切相关。
组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。
例如:C(5,3)=A(5,3)/[3!x(5-3))!]=(1x2x3x4x5)/[2x(1x2x3)]=10.
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
扩展资料:
排列组合中的基本计数原理:
加法原理和分类计数法:
(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
(2)第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
(3)分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
参考资料来源:百度百科-排列组合
2015-04-20
如C2 4是指从4个中选2个,不管它们的内部的顺序
C2 4=4×3/2×1=6
A:指把几个不但选出来,还要进行排列
如A2 4是指从四个中选出2个来,而且对他们的顺序是有要求的,顺序不一样,结果就是不一样的
A2 4=4×3=12
如有疑问,请追问;如已解决,请采纳
计算方法——
(1)排列数公式
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)组合数公式
组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
扩展资料:
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m≦n,m与n均为自然数。
(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
参考资料来源:百度百科-组合数公式
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6