二重积分如何使用洛必达?
1个回答
展开全部
因为分子对x的导数不方便求,因此要将分子上的累次积分交换次序然后用洛必达定则。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
变上限定积分的上限趋于0,而下限是0,上限和下限无限地接近,所以积分的值和0无限地接近,所以极限是0/0型,可以使用洛必达法则。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询