一道微观经济学的计算题
有4个寡头厂商,生产中没有可变成本,面对的市场需求曲线是P=120-Q,如果每个厂商按照古诺模型求得利润最大,则()A.每个厂商生产单位产品B.市场价格P=24C.行业供...
有4个寡头厂商,生产中没有可变成本,面对的市场需求曲线是P=120-Q,如果每个厂商按照古诺模型求得利润最大,则( )
A.每个厂商生产单位产品
B.市场价格P=24
C.行业供给量是90单位产品
D.不存在稳定均衡
正确答案是B,不知道怎么算的啊……拜托高人讲解一下~
怕浪费~问题解决再追加30分~ 展开
A.每个厂商生产单位产品
B.市场价格P=24
C.行业供给量是90单位产品
D.不存在稳定均衡
正确答案是B,不知道怎么算的啊……拜托高人讲解一下~
怕浪费~问题解决再追加30分~ 展开
1个回答
展开全部
古诺寡头模型(n个寡头)
设每个寡头的边际成本为C,固定成本为0。市场需求为P=a-bQ,寡头的产量为qi,i=1,2,3,...n。Q=∑qi,i是下标。
每一个寡头的利润为
πi=TRi-TCi=Pqi-Cqi=[a-b(∑qi)]qi-Cqi,i=1,2,3,...n。
那么第i个寡头的反映函数为:
dπi/qi=a-bqi-b∑qi-C
令反映函数等于0,则:b(qi-∑qi)=a-c.
观察各个反映函数,根据对称性,均衡时每个寡头的产出都是一样的【你可以自己用矩阵解一下】那么不妨设,q1=q2=q3=...=qn=q*,代入方程
b(n+1)q*=a-c,q*=(a-c)/b(n+1)
如果没有可变成本,则没有边际成本,那么q*=a/b(n+1)=120/4+1=24
那么市场价格为:P=120-24*4=24。选B。
建议你先读懂双寡头模型,再去看多寡头模型,在多寡头模型中记住一些结论,对这类选择题很有帮助。
设每个寡头的边际成本为C,固定成本为0。市场需求为P=a-bQ,寡头的产量为qi,i=1,2,3,...n。Q=∑qi,i是下标。
每一个寡头的利润为
πi=TRi-TCi=Pqi-Cqi=[a-b(∑qi)]qi-Cqi,i=1,2,3,...n。
那么第i个寡头的反映函数为:
dπi/qi=a-bqi-b∑qi-C
令反映函数等于0,则:b(qi-∑qi)=a-c.
观察各个反映函数,根据对称性,均衡时每个寡头的产出都是一样的【你可以自己用矩阵解一下】那么不妨设,q1=q2=q3=...=qn=q*,代入方程
b(n+1)q*=a-c,q*=(a-c)/b(n+1)
如果没有可变成本,则没有边际成本,那么q*=a/b(n+1)=120/4+1=24
那么市场价格为:P=120-24*4=24。选B。
建议你先读懂双寡头模型,再去看多寡头模型,在多寡头模型中记住一些结论,对这类选择题很有帮助。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询