为什么函数与反函数单调性相同?

y=f(x),x属于D的反函数记作y=f的负一次方(x),x属于f(D),既然函数的对应关系f是相反的,原函数从x映射到y,反函数从y映射到x,那么原函数单调递增(减),... y=f(x),x属于D的反函数记作y=f的负一次方(x),x属于f(D),既然函数的对应关系f是相反的,原函数从x映射到y,反函数从y映射到x,那么原函数单调递增(减),反函数不就应该单调递减(增)吗?
明白了,看来对应关系f是不变的,改变的只是把自变量和因变量调了一下,所以f(x)=y与f(y)=x拥有相同单调性
展开
 我来答
小李分享一下
2021-08-12 · TA获得超过1638个赞
知道小有建树答主
回答量:2895
采纳率:100%
帮助的人:77万
展开全部
任意取x1,x2∈[f(a),f(b)]且x1<x2
则存在x'1,x'2 ∈[a,b],使得f(x'1)=x1,f(x'2)=x2
因为f(x)在[a,b]内是增函数
所以内函数值越大,自变量容越大
由x1<x2可得,x'1<x'2,x1'-x2'<0
又由反函数的性质可知,f-1(x1)=x1',f-1(x2)=x2'
所以f-1(x1)-f-1(x2)=x1'-x2'<0
f-1(x1)<f-1(x2)
所以函数f-1(x)在[f(a),f(b)]内也是增函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式