求y=lim(x→(π/4))((sinx-cosx)/(1-((tanx)^2)))的值
1个回答
展开全部
(sinx-cosx)/(1-tan^2x)
=(sinx-cosx)/[(cos^2x-sin^2x)/cos^2x]
=-cos^2x/(cosx+sinx)
lim(x→π/4) (sinx-cosx)/(1-tan^2x)
=lim(x→π/4) -cos^2x/(cosx+sinx)
=-cos^2(π/4)/(cosπ/4+sinπ/4)
=-(√2/2)^2/(√2/2+√2/2)
=-√2/4
=(sinx-cosx)/[(cos^2x-sin^2x)/cos^2x]
=-cos^2x/(cosx+sinx)
lim(x→π/4) (sinx-cosx)/(1-tan^2x)
=lim(x→π/4) -cos^2x/(cosx+sinx)
=-cos^2(π/4)/(cosπ/4+sinπ/4)
=-(√2/2)^2/(√2/2+√2/2)
=-√2/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询