1/1*4+1/4*7+1/7*10+.+1/73*76 = = = =
1/1*4+1/4*7+1/7*10+.........+1/73*76 = = = =
原式=1/3(1-1/4)+1/3(1/4-1/7)+…+1/3(1/73-1/76)
=1/3(1-1/4+1/4-1/7+…+1/73-1/76)
=1/3(1-1/76)
=25/76
1/1*4+1/4*7+1/7*10+...+1/73*76 求解
解:利用1/n(n+3)=1/3[1/n-1/(n+3)]得
1/1*4+1/4*7+1/7*10+...+1/73*76 求
=1/3[(1-1/4)+(1/4-1/7)+...+(1/73-1/76)]
=1/3[(1-1/4+1/4-1/7+...+1/73-1/76]
=1/3(1-1/76)
=1/3*75/76
=25/76
1/1*4+1/4*7+1/7*10+......+1/2005*2008 1/1*4+1/4*7+1/7*10+......+1/2005*2008
1/1*4+1/4*7+1/7*10+......+1/2005*2008
=1/3*(1-1/4+1/4-`/7+1/7-1/10+……+1/2005-1/2008)
=1/3*(1-1/2008)
=1/3*2007/2008
=669/2008
1/1×4+1/×4×7+1/7×10···+1/2011×2014=?
1/1×4+1/×4×7+1/7×10...+1/2011×2014
=(1-1/4+1/4-1/7+1/7-1/10+……+1/2011-1/2014)÷3
=(1-1/2014)÷3
=2013/2014÷3
=671/2014
1/1*4+1/4*7+1/7*10+。。。+1/2011*2014
1/1*4+1/4*7+1/7*10+...+1/2005*2008+1/2008*2011+1/2011*2014
=1/3*(1/1-1/4)+1/3*(1/4-1/7)+...+1/3*(1/2008-1/2011)+1/3*(1/20011-1/2014)
=1/3*[(1-1/4)+(1/4-1/7)+...+(1/2008-1/2011)+(1/2011-1/2014)]
=1/3*(1-1/2014)
=671/2014
希望对你有帮助
1/1*4+1/4*7+1/7*10+…+1/2005*2008=?
哦,这是是错项法
因为 你看,1/1*4 是不是等于 1/3*(1-1/4)
也就是说 每项前都可以乘出一个1/3
再举个例子,若是1/1*5+1*5/1*9... 这样的话 前面就乘出一个1/4 ,不懂可以HI我哦~~~
1/1*4+1/4*7+1/7*10+1/10*13。。。。+1/2002*2005
1/1*4+1/4*7+1/7*10+1/10*13.....+1/2002*2005
=1/3*[(1/1-1/4)+(1/4-1/7)+(1/7-1/10)+(1/10-1/13)+.....+(1/2002-1/2005)
=1/3*(1/1-1/2005) ]
=1/3*2004/2005
=668/2005
1/4+1/4*1/7+1/7*1/10+...1/25*1/28=?
=1/3 *(1-1/4+1/4-1/7 .....+1/25-1/28)
=1/3 *(1-1/28) 当中的全抵消掉了
=9/28
1/1×4+1/4×7+1/7×10+1/10×13……+1/40×43
1/1×4+1/4×7+1/7×10+1/10×13……+1/40×43
=(1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+……+1/40-1/43)÷3
=(1-1/43)÷3
=42/43÷3
=14/43