求学霸大人救命!第二问!求详细过程!

 我来答
匿名用户
2014-10-14
展开全部
解:(1)在正方形ABCD中,AB=AD
∵∠1和∠2都对,
∴∠1=∠2,
在△ADF和△ABE中,

∴△ADF≌△ABE(SAS);

(2)由(1)有△ADF≌△ABE,
∴AF=AE,∠3=∠4.
在正方形ABCD中,∠BAD=90°.
∴∠BAF+∠3=90°.
∴∠BAF+∠4=90°.
∴∠EAF=90°.
∴△EAF是等腰直角三角形.
∴EF2=AE2+AF2.
∴EF2=2AE2.
∴EF=AE.
即DE-DF=AE.
∴DE-BE=AE.

(3)BE-DE=AE.理由如下:
在BE上取点F,使BF=DE,连接AF.
易证△ADE≌△ABF,
∴AF=AE,∠DAE=∠BAF.
在正方形ABCD中,∠BAD=90°.
∴∠BAF+∠DAF=90°.
∴∠DAE+∠DAF=90°.
∴∠EAF=90°.
∴△EAF是等腰直角三角形.
∴EF2=AE2+AF2.
∴EF2=2AE2.
∴EF=AE.
即BE-BF=AE.
∴BE-DE=AE.
追问
能不百度吗我只求第二问
匿名用户
2014-10-13
展开全部
(1)。
证明:连接BD,则BD为○o的直径(因为四边形ABCD是正方形,BD为它的对角线)
∴∠BED=90°
∴∠EBD+∠EDB=90°
即∠EBA+∠ABD+∠EDB=90°
∵∠ABD=45°
∴∠EBA+∠EDB=45°
又∵∠ADF+∠EDB=45°
∴∠ADF=∠ABE
∵AB=AD,BE=DF
∴△ADF≌△ABE(SAS)
(2).
解:理由如下:
∵△ADF≌△ABE
∴∠EAB=∠DAF
∵∠BAF+∠DAF=90°
∴∠BAF+∠EAB=90°
又∵AE=AF
∴△AEF是等腰直角三角形
∵BE=DF
∴DE-BE=EF
又∵EF=根号2AE
∴DE-BE=根号2AE
更多追问追答
追答
看在我真么辛苦的份上啊!
追问
能求您的第二问吗
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-10-14
展开全部
你可以后天再交么
追问
明早得交呜呜呜。
追答
我刚好这张卷子没带啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式