甲、乙两名篮球运动员轮流投篮直至某人投中为止,计每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且

甲、乙两名篮球运动员轮流投篮直至某人投中为止,计每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则P(ξ=k... 甲、乙两名篮球运动员轮流投篮直至某人投中为止,计每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则P(ξ=k)等于(  )A.0.6k-1×0.4B.0.24k-1×0.76C.0.4k-1×0.6D.0.6k-1×0.24 展开
 我来答
孤独患者丶煠c
推荐于2016-09-12 · 超过63用户采纳过TA的回答
知道答主
回答量:177
采纳率:0%
帮助的人:135万
展开全部
∵甲和乙投篮不受其他投篮结果的影响,
∴本题是一个相互独立事件同时发生的概率,
∵每次投篮甲投中的概率为0.4,乙投中的概率为0.6,
甲投篮的次数为ξ,甲先投,则ξ=k表示甲第k次投中篮球,而甲与乙前k-1次没有投中,或者甲第k次未投中,而乙第k次投中篮球.
根据相互独立事件同时发生的概率得到0.4k-1×0.6k-1×0.4=0.24k-1×0.4;
k次甲不中的情况应是0.4k-1×0.6k×0.6,
故总的情况是0.24k-1×0.4+0.24k-1×0.6×0.6=0.24k-1×0.76.
故选B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式