常数项级数审敛法? 50

2/3的n次方是怎么来的?如何寻找几何数比较?... 2/3的n次方是怎么来的?如何寻找几何数比较? 展开
 我来答
摇蝶舞蝶5247
2019-05-30 · TA获得超过3691个赞
知道大有可为答主
回答量:5708
采纳率:84%
帮助的人:221万
展开全部
1. (1) ∑1/(3n+2) > (1/3)∑1/(n+1), 后者发散,则原级数发散。 (3) ∑sin(π/2^n) < π∑1/2^n, 后者收敛,则原级数收敛。 (5) ∑1/[n(n)^(1/n)] = ∑1/n^(1+1/n), 根据 p 级数收敛法则,级数收敛。 2. (2) ρ = lima/a = lim(n+1)! 4^n / [4^(n+1) n!] = lim(n+1)/4 = +∞, 级数发散。 (4) ρ = lima/a = lim(n+1)^2sin[π/2^(n+1)]/[n^2sin(π/2^n)] = lim(n+1)^2/n^2 · limsin[π/2^(n+1)]/{2sin[π/2^(n+1)]cos[π/2^(n+1)]} = 1/2, 级数收敛。 3. (2) ρ = lim(a)^(1/n) = lim [n/(2n-1)]^2 = 1/4, 级数收敛。 (4) ρ = lim(a)^(1/n) = lim[n/(n+1)]^n = lim{[1-1/(n+1)]^[-(n+1)]}^[-n/(n+1)] = e^(-1) = 1/e < 1, 级数收敛。 4(2). ρ = lima/a = lim(n+1)^2·2^n/[2^(n+1)·n^2] = 1/2 级数绝对收敛。 (4). ∑sin[π(n^2+1)/n] = ∑sin(nπ+π/n) = ∑(-1)^nsin(π/n) 根据莱布尼茨法则,交错级数收敛, n→∞ 时,sin(π/n) ~ π/n, 正项级数发散,故是条件收敛。
poto8888
2019-05-30 · TA获得超过646个赞
知道小有建树答主
回答量:922
采纳率:75%
帮助的人:248万
展开全部
利用sinx<x可以获得2/3的n次方
一般通项公式里面包含有n次方,首选的比较对象就是等比级数
追问
为什么 2的n次方 可以挪到sin里面
追答
sin(pi/3^n)<pi/3^n
2^n*sin(pi/3^n)<2^n*pi/3^n=pi*(2/3)^n
并不是将2^n写入到sin的括号里
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式