求此广义积分
2个回答
展开全部
let
√x = tanu
dx = 2tanu . (secu)^2 du
x=1, u=π/4
x=无穷 , u=π/2
∫(1->无穷) √x/(1+x)^2 dx
=∫(π/4->π/2) [(tanu)/(secu)^4] [2tanu . (secu)^2 du]
=2∫(π/4->π/2) (tanu)^2/(secu)^2 du
=2∫(π/4->π/2) (sinu)^2 du
=∫(π/4->π/2) (1-cos2u) du
=[u -(1/2)sin2u]|(π/4->π/2)
=(π/2 -0) - ( π/4 - 1/2)
=π/4 +1/2
√x = tanu
dx = 2tanu . (secu)^2 du
x=1, u=π/4
x=无穷 , u=π/2
∫(1->无穷) √x/(1+x)^2 dx
=∫(π/4->π/2) [(tanu)/(secu)^4] [2tanu . (secu)^2 du]
=2∫(π/4->π/2) (tanu)^2/(secu)^2 du
=2∫(π/4->π/2) (sinu)^2 du
=∫(π/4->π/2) (1-cos2u) du
=[u -(1/2)sin2u]|(π/4->π/2)
=(π/2 -0) - ( π/4 - 1/2)
=π/4 +1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询