线性代数中行列式解法总结
1个回答
展开全部
求解行列式无非就是把行列式化培扒成上三镇中贺角或下三角,然后用对角线乘积即为行列式的值
以下几种运算方法:
1:两行(列)互换;这种方法主要是想把较小的数(最好是一)放在行列式的第一行第一列,方便下面的运算,但每互换一次行或者列,行列式都要变一次号
2:某一行(列)提出个公因子k到行列式外面;
例如,假设一行中的元素为2 4 6 8,则可提出公因子2,作为行列式的系数,这样做的好处是方便运算,只要算完化简后的行列式的值再乘以提出来的系数即可
3:某一行(列)的k倍加到另一行(列);
这是用的最广御派泛的方法之一,用这个方法可以一次把行列式化为上三角或者下三角的形式.
另外,一旦发现行列式中有两行(列)相等或者对应成比例,则此行列式的值为0
以下几种运算方法:
1:两行(列)互换;这种方法主要是想把较小的数(最好是一)放在行列式的第一行第一列,方便下面的运算,但每互换一次行或者列,行列式都要变一次号
2:某一行(列)提出个公因子k到行列式外面;
例如,假设一行中的元素为2 4 6 8,则可提出公因子2,作为行列式的系数,这样做的好处是方便运算,只要算完化简后的行列式的值再乘以提出来的系数即可
3:某一行(列)的k倍加到另一行(列);
这是用的最广御派泛的方法之一,用这个方法可以一次把行列式化为上三角或者下三角的形式.
另外,一旦发现行列式中有两行(列)相等或者对应成比例,则此行列式的值为0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询