什么是聚类分析?
1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。
2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。
例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。
3、聚类分析是研究按一定特征,对研究对象进行分类的多元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。
扩展资料:
聚类效果的检验:
一、聚类分析后得到的每个类别是否可以进行有效的命名,每个类别的特征情况是否符合现实意义,如果研究者可以结合专业知识对每个聚类类别进行命名,即说明聚类效果良好,如果聚类类别无法进行命名,则需要考虑重新进行聚类分析。
二、使用判别分析方法进行判断,将SPSS生成的聚类类别变量作为因变量(Y),而将聚类变量作为自变量(X)进行判别分析,判别分析具体分析聚类变量与类别之间投影关系情况,如果研究人员对聚类分析效果非常在乎,可以使用判别分析进行分析。
三、聚类分析方法的详细过程说明,描述清楚聚类分析的科学使用过程,科学的聚类分析方法使用即是良好结果的前提保障。
是、聚类分析后每个类别样本数量是否均匀,如果聚类结果显示为三个类别,有一个类别样本量非常少,比如低于30,此时很可能说明聚类效果较差。针对聚类效果的判断,研究者主要是结合专业知识判断,即聚类类别是否可以进行有效命名。
参考资料来源:百度百科—聚类分析
2023-10-13 · 百度认证:SPSSAU官方账号,优质教育领域创作者
聚类分析是根据事物本身的特性研究个体分类的方法。聚类分析的原则是同一类中的个体有较大相似性,不同类个体中差异较大。
比如kmeans聚类kmeans算法首先需要选择k个初始化聚类中心,其原理是计算每个数据对象到k个初始化聚类中心的距离。将数据对象分到距离聚类中心最近的那个数据集中,当所有的数据对象都划分以后,就形成了k个数据集(即k个簇)。kmeans算法呗广泛应用于数据挖掘和数据集处理以及图像分割等领域,也常常在用户画像中起着重要作用。kmeans使用的欧氏距离源自欧式空间中两点间距离公式,距离表示为:
可以使用SPSSAU进行聚类分析:
结果如下:
如上图所示,刚毛鸢尾花在花瓣宽、花瓣长两个属性数据的分布上与另外两个类别差异较为明显,具体表现为刚毛鸢尾花在花瓣长、宽数据上是都是最小的,刚毛鸢尾花的花瓣面积小这个特征较明显。此外,佛吉尼亚鸢尾花似乎有更长的花萼和花瓣。