如何证明矩阵A与B相似?

 我来答
我爱学习112
高粉答主

2023-06-27 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:159万
展开全部

由于这个矩阵A可对角化为对角矩阵B,即:A与B相似。立刻可以算出A的秩,迹、特征值以及行列式的值,均与矩阵B相同。这可以算是一个计算矩阵秩,迹、特征值以及行列式的值的一个比较简单的方法。

设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得

P^(-1)AP=B

则称矩阵A与B相似,记为A~B。

扩展资料

设A,B和C是任意同阶方阵,则有: 

(1)反身性:A~ A

(2)对称性:若A~ B,则 B~ A

(3)传递性:若A~ B,B~ C,则A~ C

(4)若A~ B,则r(A)=r(B),|A|=|B|,tr(A)=tr(B)。

(5)若A~ B,且A可逆,则B也可逆,且B~ A。

(6)若A~ B,则A与B

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式