怎样学习数学?

 我来答
loveraul0146
2014-04-21 · 超过63用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:117万
展开全部
一、代数学习法。 1. 抄标题,浏览定目标。 2. 阅读并记录重点内容。 3. 试作例题。 4. 快做练习,归纳题型。 5. 回忆小结 二、几何学习四大步。 1.①书写标题,浏览教材 ②自我讲授,写出目录 2.①按目录,读教材 ②自我讲授几何概念及定理 3.①阅读例题,形成思路 ②写出解答例题过程 4.①快做练习。 ②小结解题方法。 三.数学概念学习方法。 数学中有许多概念,如何让学生正确地掌握概念,应该指明学习概念需要怎样的一个过程,应达到什么程度。数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,指明外种延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。 下面我们归纳出数学概念的学习方法: 1. 阅读概念,记住名称或符号。 2. 背诵定义,掌握特性。 3. 举出正反实例,体会概念反映的范围。 4. 进行练习,准确地判断。 四、学公式的学习方法 公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。 我们介绍的数学公式的学习方法是: 1. 书写公式,记住公式中字母间的关系。 2. 懂得公式的来龙去脉,掌握推导过程。 3. 用数字验算公式,在公式具体化过程中体会公式中反映的规律。 4. 将公式进行各种变换,了解其不同的变化形式。 5. 将公式中的字母想象成抽象的框架,达到自如地应用公式。 五、数学定理的学习方法。 一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。 下面我们归纳出数学定理的学习方法: 1. 背诵定理。 2. 分清定理的条件和结论。 3. 理解定理的证明过程。 4. 应用定理证明有关问题。 5. 体会定理与有关定理和概念的内在关系。 有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同数公式的学习方法结合起来进行。 六、初学几何证明的学习方法。 在初一第二学期,初二、高一立体几何学习的开始,学生总感到难以入门,以下的方法是许多老教师十分认同的,无论是上课还是自学,均可以开展。 1. 看题画图。(看,写) 2. 审题找思路(听老师讲解) 3. 阅读书中证明过程。 4. 回忆并书写证明过程。 七.提高几何证明能力的化归法。 在掌握了几何证明的基本知识和方法以后,在能够较顺利和准确地表述证明过程的基础上,如何提高几何证明能力?这就需要积累各种几何题型的证明思路,需要懂得若干证明技巧。这样我们可以通过老师集中讲解,或者通过集中阅读若干几何证明题,而达到上述目的。 化归法是将未知化归为已知的方法,当我们遇到一个新的几何证明题时,我们需要注意其题型,找到关键步骤,将它化归为已知题型时就可结束。此时最重要的是记住化归步骤及证题思路即可,不再重视祥细的表述过程。 提高几何证明能力的化归法: 1.审题,弄清已知条件和求证结论。 2.画图,作辅助线,寻找证题途径。 3.记录证题途径的各个关键步骤。 4.总结证明思路,使证题过程在大脑中形成清淅的印象。 八、波利亚解题思考方法。 1. 预见法 1. 收集资料,进行组织。 2. 辨认与回忆,充实与重新安排。 3. 分离与组合。 4. 回顾 1. 解答问题法。 1. 弄清问题。 2. 拟定问题。 3. 实现计划。 4. 回顾。 1. 解题过程自问法. 1. 我选择的是怎样的一条解题途径。 2. 我为什么作出这样的选择? 3. 我现在已进行到了哪一阶段? 4. 这一步的实施在整个解题过程中具有怎样的地位? 5. 我目前所面临的主要困难是什么? 6. 解题的前景如何? 九、数学学习的基本思维方法。 1. 观察与实验 2.分析与综合 3.抽象与概括 4.比较与分类 5.一般化与特殊化 6.类比联想与归纳猜想 十、理解、巩固、应用、系统化四步学习法 1.理解:内容,标志,阶段,过程。 2.巩固:透彻理解,牢固记忆,多方联想,合理复习。 3.应用:理论,实践,具体,综合。 4.系统化: ①明确系统内部各要素的属性。 ②使各要素之间形成多方的联系。 ③概括各要素的各种属性,形成整体性。 ④同化于原知识系统之中。 十一、高效学习方法在数学学习中的应用 1. 超级学习方法 〈二〉快速记忆法 〈三〉快速阅读法
涌麦VM
2014-04-21 · 超过59用户采纳过TA的回答
知道答主
回答量:178
采纳率:50%
帮助的人:57.1万
展开全部
给概括总结下,首先要喜欢数学,然后要肯做难题,并享受做出难题时的自豪感,不怕烦,不害怕就可以了。遇到难题,分析每一个条件能给予你的条件,并化简每一个你能够化简的条件。考试时,遇到难题着不害怕,仔细反复读题,直到理解题意,当5分钟还没有思路时则应果断放弃,将简单题拿满分比做出这一道更有价值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sen7324
2014-04-21 · TA获得超过207个赞
知道答主
回答量:163
采纳率:100%
帮助的人:66.2万
展开全部
数学的三大特点: 严谨性、抽象性、广泛的应用性 所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 我们来看看一个生活中有趣的问题。 在任何一次集会中,握过奇数次手的人必有偶数个,试证明。 如果抓住两个关键:一是握手总次数必为偶数, 二、高中数学的特点 往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1.理论加强 2.课程增多 3.难度增大 4.要求提高 三、掌握数学思想 高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用“矛盾”的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ② y=y0/2 ③ 显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅 如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进 身处应试教育的怪圈,每个教师和学生都不由自主地陷入“题海”之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要“博览群题”才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读 我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? “学而不思则罔,思而不学则殆”,在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1)是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? 二)学会思考 爱因斯坦曾说:“发展独立思考和独立判断的一般能力应当始终放在首位”,勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题 2、善于反思与反求
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式