已知数列{an}满足a1=a2=2,a3=3,an+2=a2n+1+ (?1)nan(n≥2)(Ⅰ)求a4,a5;(Ⅱ)是否存在实数λ,使
已知数列{an}满足a1=a2=2,a3=3,an+2=a2n+1+(?1)nan(n≥2)(Ⅰ)求a4,a5;(Ⅱ)是否存在实数λ,使得数列{an+1-λan}(n∈N...
已知数列{an}满足a1=a2=2,a3=3,an+2=a2n+1+ (?1)nan(n≥2)(Ⅰ)求a4,a5;(Ⅱ)是否存在实数λ,使得数列{an+1-λan}(n∈N*)是等差数列?若存在,求出所有满足条件的λ的值;若不存在,说明理由;(Ⅲ)设bn=an+2-μan+1(n∈N*),若数列{bn}是等比数列,求实数μ的值.
展开
1个回答
展开全部
(I)a4=
=
=5
a5=
=
=8
(II)假设存在实数λ,使得数列{an+1-λan}(n∈N*)是等差数列,
则2(a3-λa2)=(a2-λa1)+(a4-λa3),
解得λ=1
由a3=3,a4=5,a5=8,a6=13得2(a5-a4)≠(a4-a3)-(a3-a2),
与数列{an+1-an}(n∈N*)是等差数列矛盾
故不存在实数λ,使数列{an+1-λan}(n∈N*)是等差数列
(III)根据题意,可得a1=a2=2,a3=3,a4=5,a5=8,
则b1=a3-μa2=3-2μ,b2=a4-μa3=5-3μ,b3=a5-μa4=8-5μ,
若数列{bn}是等比数列,则b1×b3=b22,即(3-2μ)(8-5μ)=(5-3μ)2,
解可得μ=
.
| ||
a2 |
9+1 |
2 |
a5=
| ||
a3 |
25?1 |
3 |
(II)假设存在实数λ,使得数列{an+1-λan}(n∈N*)是等差数列,
则2(a3-λa2)=(a2-λa1)+(a4-λa3),
解得λ=1
由a3=3,a4=5,a5=8,a6=13得2(a5-a4)≠(a4-a3)-(a3-a2),
与数列{an+1-an}(n∈N*)是等差数列矛盾
故不存在实数λ,使数列{an+1-λan}(n∈N*)是等差数列
(III)根据题意,可得a1=a2=2,a3=3,a4=5,a5=8,
则b1=a3-μa2=3-2μ,b2=a4-μa3=5-3μ,b3=a5-μa4=8-5μ,
若数列{bn}是等比数列,则b1×b3=b22,即(3-2μ)(8-5μ)=(5-3μ)2,
解可得μ=
1±
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询