已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠
已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有...
已知:如图,在正方形ABCD中,点G是BC延长线上一点,连接AG,分别交BD、CD于点E、F.(1)求证:∠DAE=∠DCE;(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.
展开
1个回答
展开全部
(1)证明:在△DAE和△DCE中,
∠ADE=∠CDE(正方形的对角线平分对角),
ED=DE(公共边),
AE=CE(正方形的四条边长相等),
∴△DAE≌△DCE (SAS),
∴∠DAE=∠DCE(全等三角形的对应角相等);
(2)解:如图,由(1)知,△DAE≌△DCE,
∴AE=EC,
∴∠EAC=∠ECA(等边对等角);
又∵CG=CE(已知),
∴∠G=∠CEG(等边对等角);
而∠CEG=2∠EAC(外角定理),
∠ECB=2∠CEG(外角定理),
∴4∠EAC-∠ECA=∠ACB=45°,
∴∠G=∠CEG=30°;
过点C作CH⊥AG于点H,
∴∠FCH=30°,
∴在直角△ECH中,EH=
CH,EG=2
CH,
在直角△FCH中,CH=
CF,
∴EG=2
×
CF=3CF.
∠ADE=∠CDE(正方形的对角线平分对角),
ED=DE(公共边),
AE=CE(正方形的四条边长相等),
∴△DAE≌△DCE (SAS),
∴∠DAE=∠DCE(全等三角形的对应角相等);
(2)解:如图,由(1)知,△DAE≌△DCE,
∴AE=EC,
∴∠EAC=∠ECA(等边对等角);
又∵CG=CE(已知),
∴∠G=∠CEG(等边对等角);
而∠CEG=2∠EAC(外角定理),
∠ECB=2∠CEG(外角定理),
∴4∠EAC-∠ECA=∠ACB=45°,
∴∠G=∠CEG=30°;
过点C作CH⊥AG于点H,
∴∠FCH=30°,
∴在直角△ECH中,EH=
3 |
3 |
在直角△FCH中,CH=
| ||
2 |
∴EG=2
3 |
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询