(Ⅰ)设a,b,c∈(0,+∞),求证:a2b+b2c+c2a≥a+b+c;(Ⅱ)已知a+b=1,对?a,b∈(0,+∞),1a+4b
(Ⅰ)设a,b,c∈(0,+∞),求证:a2b+b2c+c2a≥a+b+c;(Ⅱ)已知a+b=1,对?a,b∈(0,+∞),1a+4b≥|2x-1|-|x+1|恒成立,求...
(Ⅰ)设a,b,c∈(0,+∞),求证:a2b+b2c+c2a≥a+b+c;(Ⅱ)已知a+b=1,对?a,b∈(0,+∞),1a+4b≥|2x-1|-|x+1|恒成立,求x的取值范围.
展开
卧聋的人476
推荐于2016-08-22
·
超过74用户采纳过TA的回答
关注
(Ⅰ)∵a,b,c∈(0,+∞),
∴a
2+b
2≥2ab,
∴
+b≥2a,同理
+b≥2b,
+a≥2c,
相加得
+
+
+a+b+c≥2a+2b+2c,
∴
+
+
≥a+b+c;
(Ⅱ)∵a>0,b>0 且a+b=1,
∴
+
=(a+b)(
+
)=5+
+
≥9,
∴
+
的最小值为9.
∵对?a,b∈(0,+∞),
+
≥|2x-1|-|x+1|恒成立,
∴|2x-1|-|x+1|≤9.
∴当x≤-1时,2-x≤9,解得:x≥-7,
∴-7≤x≤-1;
当-1<x<
时,-3x≤9,解得:x≥-3,
∴-1<x<
;
当x≥
时,x-2≤9,解得:x≤11,
∴
≤x≤11;
综上所述,x的取值范围为:-7≤x≤11.
收起
为你推荐: