设Sn是等比数列{an}的前n项和,(1)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.(2)设p,r
设Sn是等比数列{an}的前n项和,(1)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.(2)设p,r,t,k,m,n∈N*,且p,r,t成等差数列,若...
设Sn是等比数列{an}的前n项和,(1)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.(2)设p,r,t,k,m,n∈N*,且p,r,t成等差数列,若pSk,rSm,tSn成等差数列,试判断pak+1,ram+1,tan+1三者关系,并说明理由.
展开
1个回答
展开全部
(1)依题意,设等比数列{an}的公比为q,
可得2S9=S6+S3,即2
=
+
整理得2q6-q3-1=0,解q3=1或-
,
∵q=1时,2S9=S6+S3不成立
∴q3=-
,
可得a2+a5-2a8=a2(1+q3-2q6)=a2(1-
-2×
)=0
∴a2+a5=2a8,即a2,a8,a5成等差数列.
(2)设等比数列{an}的公比为q,
由pSk,rSm,tSn成等差数列,可得2rSm=pSk+tSn,
当q=1时,ak+1=am+1=an+1=a1,结合2r=p+t得到2ram+1=pak+1+tan+1.
当q≠1时,由2rSm=pSk+tSn结合等比数列前n项和公式,
化简得2ra1(1-qm)=pa1(1-qk)+ta1(1-qn),
∵2r=p+t,可得2ra1=pa1+ta1,
∴上式化简,得2ra1qm=pa1qk+ta1qn,即2ram+1=pak+1+tan+1.
综上所述,若pSk,rSm,tSn成等差数列,则pak+1,ram+1,tan+1成等差数列.
可得2S9=S6+S3,即2
a1(1?q9) |
1?q |
a1(1?q6) |
1?q |
a1(1?q3) |
1?q |
整理得2q6-q3-1=0,解q3=1或-
1 |
2 |
∵q=1时,2S9=S6+S3不成立
∴q3=-
1 |
2 |
可得a2+a5-2a8=a2(1+q3-2q6)=a2(1-
1 |
2 |
1 |
4 |
∴a2+a5=2a8,即a2,a8,a5成等差数列.
(2)设等比数列{an}的公比为q,
由pSk,rSm,tSn成等差数列,可得2rSm=pSk+tSn,
当q=1时,ak+1=am+1=an+1=a1,结合2r=p+t得到2ram+1=pak+1+tan+1.
当q≠1时,由2rSm=pSk+tSn结合等比数列前n项和公式,
化简得2ra1(1-qm)=pa1(1-qk)+ta1(1-qn),
∵2r=p+t,可得2ra1=pa1+ta1,
∴上式化简,得2ra1qm=pa1qk+ta1qn,即2ram+1=pak+1+tan+1.
综上所述,若pSk,rSm,tSn成等差数列,则pak+1,ram+1,tan+1成等差数列.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询