大神!求解答!!!
1个回答
展开全部
=∫[1 - 1/(1+x^2)] * arctanx * dx
=∫arctanx * dx - ∫arctanx * dx/(1+x^2)
=∫arctanx * dx - ∫arctanx * d(arctanx)
=∫θ*(secθ)^2 *dθ - 1/2 * (arctanx)^2 设 x = tanθ,则 dx = (secθ)^2 * dθ
=θ*tanθ - ∫ tanθ * dθ - 1/2 * (arctanx)^2
=θ*tanθ - ∫sinθ*dθ/cosθ - 1/2 * (arctanx)^2
=θ*tanθ + ∫d(cosθ)/cosθ - 1/2 * (arctanx)^2
=arctanx * x + ln(cosθ) - 1/2 * (arctanx)^2 + C
=x*arctanx - 1/2*ln(sec)^2 - 1/2 * (arctanx)^2 + C
=x*arctanx - 1/2*ln(1+x^2) - 1/2 * (arctanx)^2 + C
=∫arctanx * dx - ∫arctanx * dx/(1+x^2)
=∫arctanx * dx - ∫arctanx * d(arctanx)
=∫θ*(secθ)^2 *dθ - 1/2 * (arctanx)^2 设 x = tanθ,则 dx = (secθ)^2 * dθ
=θ*tanθ - ∫ tanθ * dθ - 1/2 * (arctanx)^2
=θ*tanθ - ∫sinθ*dθ/cosθ - 1/2 * (arctanx)^2
=θ*tanθ + ∫d(cosθ)/cosθ - 1/2 * (arctanx)^2
=arctanx * x + ln(cosθ) - 1/2 * (arctanx)^2 + C
=x*arctanx - 1/2*ln(sec)^2 - 1/2 * (arctanx)^2 + C
=x*arctanx - 1/2*ln(1+x^2) - 1/2 * (arctanx)^2 + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询