一阶线性非齐次微分方程y'=p(x)y+q(x)的通解是?

一阶线性非齐次微分方程y'=p(x)y+q(x)的通解是?... 一阶线性非齐次微分方程y'=p(x)y+q(x)的通解是? 展开
 我来答
baochuankui888
高粉答主

推荐于2019-10-01 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:9339
展开全部

先算对应的齐次方程的解.

y'+P(x)y=0

y'/y=-P(x)

lny=-∫P(x)dx+C

y=ke^(-∫P(x)dx)

下面用常数变易法求解原方程的解.

设k为u(x)

y=u(x)e^(-∫P(x)dx)

y'=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)

代入得:

Q(x)

=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)+u(x)P(x)e^(-∫P(x)dx)

u(x)=∫Q(x)e^(∫P(x)dx)+C

y=e^(-∫P(x)dx)(∫Q(x)e^(∫P(x)dx)+C)

扩展资料:

定义

形如  (记为式1)的方程称为一阶线性微分方程。其特点是它关于未知函数y及其一阶导数是一次方程。这里假设  ,  是x的连续函数。

若  ,式1变为  (记为式2)称为一阶齐线性方程

如果  不恒为0,式1称为一阶非齐线性方程,式2也称为对应于式1的齐线性方程。式2是变量分离方程,它的通解为  ,这里C是任意常数。

参考资料:百度百科——一阶线性微分方程



富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
xiejings_88
推荐于2017-12-15 · TA获得超过9625个赞
知道大有可为答主
回答量:3619
采纳率:66%
帮助的人:1707万
展开全部
先算对应的齐次方程的解.
y'+P(x)y=0
y'/y=-P(x)
lny=-∫P(x)dx+C
y=ke^(-∫P(x)dx)
下面用常数变易法求解原方程的解.
设k为u(x)
y=u(x)e^(-∫P(x)dx)
y'=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)
代入得:
Q(x)
=u'(x)e^(-∫P(x)dx)-u(x)P(x)e^(-∫P(x)dx)+u(x)P(x)e^(-∫P(x)dx)
u(x)=∫Q(x)e^(∫P(x)dx)+C
y=e^(-∫P(x)dx)(∫Q(x)e^(∫P(x)dx)+C)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
天平座de鱼
2019-12-23 · TA获得超过1963个赞
知道小有建树答主
回答量:4815
采纳率:0%
帮助的人:324万
展开全部
一阶线性非齐次微分方程的话,这个通解嗯比较难,我数学老师嗯交的晚。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式