初二三角形
展开全部
连接AM
因为AB=AC(已知)
所以∠B=∠C(等边对等角)
因为∠A+∠B+∠C=180(三角形内角和为180度)
因为∠A=90(已知)
所以∠B=∠C=45(等式性质)
因为DE⊥AB(已知)
所以∠BED=∠AED=90(垂直定义)
因为∠B+∠BED+∠EDB=180(三角形内角和为180度)
所以∠BDE=45=∠B(等式性质)
所以BE=DE(等角对等边)
因为DF⊥AC(已知)
所以∠AFD=90(垂直定义)
因为∠AFD=∠AED=∠EAF=90(已证)
所以四边形AEDF为矩形(有三个内角为90度的四边形是矩形)
所以AF=DE(矩形对边相等)
因为BE=DE(已证)
所以AF=BE(等量代换)
因为M是BC中点(已知)
AB=AC(已知)
所以∠AMB=∠AMC=90
∠BAM=∠CAM=∠B=45(等腰三角形底边高线、底边中线,顶角角平分线三线重合)
因为∠BAC=90(已知)
所以AM=BM=CM(直角三角形斜边中线等于斜边一半)
在△AFM与△BEM中
AF=BE(已证)
∠FAM=∠B(已证)
AM=BM(已证)
所以△AFM≌△BEM(边角边)
所以EM=FM(全等三角形对应边相等)
AMF=BME(全等三角形对应角相等)
因为∠BME+∠AME=∠BMA=90(已证)
所以∠AMF+∠AME=∠EMF=90(等量代换)
因为∠EMF=90
EM=FM(已证)
所以三角形MEF为等腰直角三角形
因为AB=AC(已知)
所以∠B=∠C(等边对等角)
因为∠A+∠B+∠C=180(三角形内角和为180度)
因为∠A=90(已知)
所以∠B=∠C=45(等式性质)
因为DE⊥AB(已知)
所以∠BED=∠AED=90(垂直定义)
因为∠B+∠BED+∠EDB=180(三角形内角和为180度)
所以∠BDE=45=∠B(等式性质)
所以BE=DE(等角对等边)
因为DF⊥AC(已知)
所以∠AFD=90(垂直定义)
因为∠AFD=∠AED=∠EAF=90(已证)
所以四边形AEDF为矩形(有三个内角为90度的四边形是矩形)
所以AF=DE(矩形对边相等)
因为BE=DE(已证)
所以AF=BE(等量代换)
因为M是BC中点(已知)
AB=AC(已知)
所以∠AMB=∠AMC=90
∠BAM=∠CAM=∠B=45(等腰三角形底边高线、底边中线,顶角角平分线三线重合)
因为∠BAC=90(已知)
所以AM=BM=CM(直角三角形斜边中线等于斜边一半)
在△AFM与△BEM中
AF=BE(已证)
∠FAM=∠B(已证)
AM=BM(已证)
所以△AFM≌△BEM(边角边)
所以EM=FM(全等三角形对应边相等)
AMF=BME(全等三角形对应角相等)
因为∠BME+∠AME=∠BMA=90(已证)
所以∠AMF+∠AME=∠EMF=90(等量代换)
因为∠EMF=90
EM=FM(已证)
所以三角形MEF为等腰直角三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询