y的二阶导-y的一阶导-y的²=0的通解是什么
展开全部
y''
+
y'
=
e^x.......................(1)
y''
+
y'
=
0............................(2)
对应的特征根:
s1=0.........s2=-1
(1)的特解:
y1=0.5e^x...........................(3)
(2)的通解:
y*
=
c1
+
c2
e^(-x).........(4)
(1)的通解:
y
=
y*
+
y1
即:
y
=
c1
+
c2
e^(-x)
+
0.5
e^(x).............(5)
c1,
c2
为积分常数,由初始条件确定。
+
y'
=
e^x.......................(1)
y''
+
y'
=
0............................(2)
对应的特征根:
s1=0.........s2=-1
(1)的特解:
y1=0.5e^x...........................(3)
(2)的通解:
y*
=
c1
+
c2
e^(-x).........(4)
(1)的通解:
y
=
y*
+
y1
即:
y
=
c1
+
c2
e^(-x)
+
0.5
e^(x).............(5)
c1,
c2
为积分常数,由初始条件确定。
展开全部
解:
令:G(x,y)=x²-xy+y²-1=0
根据隐函数定义:
对上式求关于x的偏导:
G'x=2x-y
对上式求关于y的偏导:
G'y=2y-x
∴
dy/dx
=
-
G'x/G'y
=
(2x-y)/(x-2y)
对z=x²+y²求关于x的偏导
dz/dx
=2x+2y·(dy/dx)
=2x+2y·(2x-y)/(x-2y)
=(2x²-4xy+4xy-2y²)/(x-2y)
=2(x²-y²)/(x-2y)
d²z/dx²
={2[2x-2y·(dy/dx)]·(x-2y)-2(x²-y²)·[1-2(dy/dx)]}/(x-2y)²
={[4x(x-2y)-4y·2(x²-y²)]-2(x²-y²)·[1-2·2(x²-y²)/(x-2y)]}/(x-2y)²
={[4x(x-2y)²-4y·2(x²-y²)(x-2y)]-2(x²-y²)·[1-2·2(x²-y²)]}/(x-2y)³
=(4x³+16xy²-16xy-8yx³+16x²y²+8xy³+16y·y³-2x²-2y²+8x·x³+8yy³-16x²y²)/(x-2y)³
=(4x³+16xy²-16xy-8yx³+8xy³+24y^4-2x²-2y²+8x^4)/(x-2y)³
令:G(x,y)=x²-xy+y²-1=0
根据隐函数定义:
对上式求关于x的偏导:
G'x=2x-y
对上式求关于y的偏导:
G'y=2y-x
∴
dy/dx
=
-
G'x/G'y
=
(2x-y)/(x-2y)
对z=x²+y²求关于x的偏导
dz/dx
=2x+2y·(dy/dx)
=2x+2y·(2x-y)/(x-2y)
=(2x²-4xy+4xy-2y²)/(x-2y)
=2(x²-y²)/(x-2y)
d²z/dx²
={2[2x-2y·(dy/dx)]·(x-2y)-2(x²-y²)·[1-2(dy/dx)]}/(x-2y)²
={[4x(x-2y)-4y·2(x²-y²)]-2(x²-y²)·[1-2·2(x²-y²)/(x-2y)]}/(x-2y)²
={[4x(x-2y)²-4y·2(x²-y²)(x-2y)]-2(x²-y²)·[1-2·2(x²-y²)]}/(x-2y)³
=(4x³+16xy²-16xy-8yx³+16x²y²+8xy³+16y·y³-2x²-2y²+8x·x³+8yy³-16x²y²)/(x-2y)³
=(4x³+16xy²-16xy-8yx³+8xy³+24y^4-2x²-2y²+8x^4)/(x-2y)³
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询