tan公式是什么?
三角函数tan指的是正切函数,公式有倍角公式公式、半角公式、三倍角公式、同角关系公式、两角和与差的tan三角函数公式、万能公式、降幂公式等,具体如下:
(1)tan及其他三角函数的半角公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
(2)tan及其他三角函数的倍角公式
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]\n\n
(3)tan及其他三角函数的三倍角公式
sin3α=4sinα*sin(π/3+α)sin(π/3-α)
cos3α=4cosα*cos(π/3+α)cos(π/3-α)
tan3α=tanα*tan(π/3+α)*tan(π/3-α)
2、同角三角函数的关系公式
(1)平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
(2)积的关系:
sinα=tanα*cosα cosα=cotα*sinα
tanα=sinα*secα cotα=cosα*cscα
secα=tanα*cscα cscα=secα*cotα
(3)倒数关系:
tanα·cotα=1
nsinα·cscα=1
cosα·secα=1
(4)商数关系公式:
tanα=sinα/cosα,cotα=cosα/sinα
3、两角和与差的tan三角函数公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ);
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
4、tan的万能公式
tanα=2tan(α/2)/[1-tan^2(α/2)]
5、降幂公式
tan^2(α)=(1-cos(2α))/(1+cos(2α))
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
正切函数 tanθ=y/x
同角三角函数
(1)平方关系:tan^2(α)+1=sec^2(α)
(2)积的关系:tanα=sinα*secαcotα=cosα*cscα
扩展资料:
正切定理:
在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
法兰西斯·韦达(François Viète)曾在他对三角法研究的第一本著作《应用于三角形的数学法则》中提出正切定理。
现代的中学课本已经甚少提及,例如由于中华人民共和国曾经对前苏联和其教育学的批判,在1966年至1977年间曾经将正切定理删除出中学数学教材。
不过在没有计算机的辅助求解三角形时,这定理可比余弦定理更容易利用对数来运算投影等问题。
正切定理:(a + b) / (a - b) = tan((α+β)/2) / tan((α-β)/2)
证明 由下式开始:
由正弦定理得出
(参阅三角恒等式)
正切函数是直角三角形中,对边与邻边的比值。放在直角坐标系中(如图《定义图》所示)即tanθ=y/x
也有表示为tgθ=y/x,但一般常用tanθ=y/x。曾简写为tg,现已停用,仅在20世纪90年代以前出版的书籍中使用。
tan公式是三角函数正切公式:
tana=1/seca
tan2a=2tana/(1+tan^2 a)
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
扩展资料:
1、设α为任意角,终边相同的角的同一三角函数的值相等:tan(2kπ+α)=tanα
2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα
3、任意角α与-α的三角函数值之间的关系:tan(-α)=-tanα
4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:tan(π-α)=-tanα
5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:tan(2π-α)=-tanα
tana=sina/cosa
tanα=1/cotα
1、设α为任意角,终边相同的角的同一三角函数的值相等:tan(2kπ+α)=tanα
2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα
3、任意角α与-α的三角函数值之间的关系:tan(-α)=-tanα
4、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:tan(π-α)=-tanα
5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:tan(2π-α)=-tanα
扩展资料:
正切函数图像的性质
定义域:{x|x≠(π/2)+kπ,k∈Z}
值域:R
奇偶性:有,为奇函数
周期性:有
最小正周期:kπ,k∈Z
单调性:有
单调增区间:(-π/2+kπ,+π/2+kπ),k∈Z
单调减区间:无
六种基本函数
函数名:正弦函数余弦函数正切函数余切函数正割函数余割函数
正弦函数sinθ=y/r
余弦函数cosθ=x/r
正切函数tanθ=y/x
余切函数cotθ=x/y
正割函数secθ=r/x
余割函数cscθ=r/y
应该说的是tan三角函数公式及度数公式
1.关于tan公式
tanα·cotα=1
sinα/cosα=tanα=secα/cscα
1+tan^2(α)=sec^2(α)
tanα=2tan(α/2)/[1-tan^2(α/2)]
tan(2α)=2tanα/[1-tan^2(α)]
tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
tan3α=tanα·tan(π/3+α)·tan(π/3-α)
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1tan度数公式
1.tan30=√3/3
2.tan45=1
3.tan60=√3
2正切定义
正切函数是角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做正切。
若将θ放在直角坐标系中即tanθ=y/x。tanA=∠A的对边/∠A对边的邻边。在直角坐标系中相当于直线的斜率k。
拓展资料
三角公式
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )
二、降幂公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
三、推导公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
四、两角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
五、和差化积
1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
六、积化和差
1、sinαsinβ = [cos(α-β)-cos(α+β)] /2
2、sinαcosβ = [sin(α+β)+sin(α-β)]/2
3、cosαsinβ = [sin(α+β)-sin(α-β)]/2
七、诱导公式
1、(-α) = -sinα、cos(-α) = cosα
2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα
3、3cos(π/2+α) = -sinα
4、(π-α) = sinα、cos(π-α) = -cosα
5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα
6、tan(π-α)=-tanα、tan(π+α)=tanα
八、锐角三角函数公式
1、sin α=∠α的对边 / 斜边
2、α=∠α的邻边 / 斜边
3、tan α=∠α的对边 / ∠α的邻边
4、cot α=∠α的邻边 / ∠α的对边