已知f(a)=sin(π-a)cos(2π-a)/cos(-π-a)tan(a+π)求f(-31π/3)的值
1个回答
展开全部
解
f(a)=[sin(π-a)cos(2π-a)]/[cos(-π-a)tan(a+π)]
=[sinacos(-a)]/[cos(π+a)tana]
=[sinacosa]/[-cosatana]
=[sinacosa]/(-sina)
=-cosa
f(-31π/3)
=-cos(-31π/3)
=-cos(31π/3)
=-cos(10π+π/3)
=-cos(π/3)
=-1/2
f(a)=[sin(π-a)cos(2π-a)]/[cos(-π-a)tan(a+π)]
=[sinacos(-a)]/[cos(π+a)tana]
=[sinacosa]/[-cosatana]
=[sinacosa]/(-sina)
=-cosa
f(-31π/3)
=-cos(-31π/3)
=-cos(31π/3)
=-cos(10π+π/3)
=-cos(π/3)
=-1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询