用简算的方法: 3/2-5/6+7/12-9/20+11/30-13/42
3/2-5/6+7/12-9/20+11/30-13/42的简算方法是什么?
这种多项分数加减的题目,多数是用所谓的列项法来做。
3/2-5/6+7/12-9/20+11/30-13/42
=1+1/2-(1/2+1/3)+(1/3+1/4)-(1/4+1/5)+(1/5+1/6)-(1/6+1/7)
=1+1/2-1/2-1/3+1/3+1/4-1/4-1/5+1/5+1/6-1/6-1/7
=1-1/7
=6/7
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。
示例:
【例1】【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.
解:an=1/[n(n+1)]=(1/n)- [1/(n+1)](裂项)
则 Sn=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/n)- [1/(n+1)](裂项求和)
= 1-1/(n+1)
= n/(n+1)
【例2】【整数裂项基本型】求数列an=n(n+1) 的前n项和.
解:an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)
则 Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)
= [n(n+1)(n+2)]/3
【例3】1/(1×4)+1/(4×7)+1/(7×10)+……+1/(91×94)使用裂项公式将每个分式展开成两个分数。
原式=1/3 *[(1-1/4)+(1/4-1/7)+(1/7-1/10)+……+(1/91-1/94)]=1/3*(1-1/94)=31/94
小结
此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
易错点:注意检查裂项后式子和原式是否相等,典型错误如:1/(3×5)=1/3-1/5(等式右边应当除以2)
附:数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)
1、分组法求数列的和:如an=2n+3n
2、错位相减法求和:如an=n·2^n
3、裂项法求和:如an=1/n(n+1)
4、倒序相加法求和:如an= n
5、求数列的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函式f(n)的增减性 如an= an^2+bn+c(a≠0)
6、在等差数列 中,有关Sn 的最值问题--常用邻项变号法求解:
(1)当 a1>0,d<0时,满足{an}的项数m使得Sm取最大值.
(2)当 a1<0,d>0时,满足{an}的项数m使得Sm取最小值.
7、对于1/n+1/(n+1)+1/(n+2)……+1/(n+n)的算式同样适用。
简算 3/2-5/6+7/12-9/20+11/30-13/42 跪求
3/2-5/6+7/12-9/20+11/30-13/42
=1+1/2-(1/2+1/3)+(1/3+1/4)-(1/4+1/5)+(1/5+1/6)-(1/6+1/7)
=1+1/2-1/2-1/3+1/3+1/4-1/4-1/5+1/5+1/6-1/6-1/7
=1-1/7
=6/7
3/2-5/6+7/12-9/20+11/30-13/42 = = = 简便算
3/2-5/6+7/12-9/20+11/30-13/42
=3/2+7/12-9/20+11/30-13/42-5/6
=18/12+7/12-27/60+22/60-13/42-35/42
=25/12-5/60-48/42
=25/12-1/12-8/7
=2-8/7
=6/7
求3/2-5/6+7/12-9/20+11/30-13/42的解
原式=(1+1/2)-(1/2+1/3)+(1/3+1/4)-(1/4+1/5)+(1/5+1/6)-(1/6+1/7)
=1+1/2-1/2-1/3+1/3+1/4-1/4-1/5+1/5+1/6-1/6-1/7
=1-1/7 (不好意思,刚才多按了一下)
=6/7
3/2-5/6+7/12-9/20+11/30-13/42(要用简便演算法)
原式=(1+1/2)-(1/2+1/3)+(1/3+1/4)-(1/4+1/5)+(1/5+1/6)-(1/6+1/7)=1-1/7=6/7
给分