已知微分方程的通解怎么求这个微分方程?
展开全部
已知微分方程的通解怎么求这个微分方程
答:求导!如:1。x^2-xy+y^2=c
等式两边对x求导:2x-y-x(dy/dx)+2y(dy/dx)=0
故dy/dx=(2x-y)/(x-2y);或写成
2x-y-(x-2y)y′=0
若要求二阶微分方程则需再求导一次:
2-y′-(1-2y′)y′+(x-2y)y〃=0
2。e^(-ay)=c1x+c2
-ay′e^(-ay)=c₁(一阶微分方程)
-ay〃e^(-ay)-ay′(-ay′)e^(-ay)=0,即a²(y′)²-ay〃=0(二阶微分方程)
答:求导!如:1。x^2-xy+y^2=c
等式两边对x求导:2x-y-x(dy/dx)+2y(dy/dx)=0
故dy/dx=(2x-y)/(x-2y);或写成
2x-y-(x-2y)y′=0
若要求二阶微分方程则需再求导一次:
2-y′-(1-2y′)y′+(x-2y)y〃=0
2。e^(-ay)=c1x+c2
-ay′e^(-ay)=c₁(一阶微分方程)
-ay〃e^(-ay)-ay′(-ay′)e^(-ay)=0,即a²(y′)²-ay〃=0(二阶微分方程)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询